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Problem Description

◦ Problem: Network traffic on board US Navy Ships are 
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Problem Description

◦ Problem: Network traffic on board US Navy Ships are 
vulnerable to malicious attacks

◦ Why is network traffic important?
◦ Objective:  Detect malicious attacks to the network traffic 

data and trigger subsequent alerts. 
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Methodology Exploration

◦ Objective:  Detect malicious attacks to the network traffic 
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Methodology Exploration

Methods
1. Long Short Term Memory (LSTM) Neural Networks

Disadvantage: Does not detect attacks more 
sophisticated than altering data magnitude  
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RL Problem Formulation
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◦ Per Episode: 
▫ Randomly generate waypoints
▫ Use a PID controller to navigate to waypoints
▫ Randomly set environment factors
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RL Problem Formulation
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◦ Per Step: 
▫ Collect an observation
▫ Wrap observation with an attack module

time



RL Problem Formulation
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◦ Naïve Attack Module
▫ Randomly selects timestep to launch attack
▫ Randomly selects observations to attack
▫ Randomly selects perturbation amount
▫ Continues to attack observation until agent detects attack

time

Launch attack



RL Problem Formulation
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◦ Observational Space (O)

𝑶 = [

[𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 + 𝒏 𝒉𝒊𝒔𝒕𝒐𝒓𝒚], 

[𝒐𝒓𝒊𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 + 𝒏 𝒉𝒊𝒔𝒕𝒐𝒓𝒚], 

[𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒓𝒂𝒕𝒆 + 𝒏 𝒉𝒊𝒔𝒕𝒐𝒓𝒚],

[𝒐𝒓𝒊𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝒓𝒂𝒕𝒆𝒔 + 𝒏 𝒉𝒊𝒔𝒕𝒐𝒓𝒚], 

[𝒆𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕 𝒊𝒏𝒇𝒐 + 𝒏 𝒉𝒊𝒔𝒕𝒐𝒓𝒚], 

[𝒆𝒏𝒈𝒊𝒏𝒆 𝒊𝒏𝒇𝒐 + 𝒏 𝒉𝒊𝒔𝒕𝒐𝒓𝒚],

[𝒏𝒆𝒙𝒕 𝒘𝒂𝒚𝒑𝒐𝒊𝒏𝒕]
] 

𝒘𝒉𝒆𝒓𝒆:

𝒏=𝟓
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A = [A1, A2]

A1 = ∀ [ 𝒐 ∈ 𝑶 ⋀ ∼ 𝒐 ∈ 𝒔𝒆𝒑 ]: 𝟎 ≤ 𝒂 ≤ 𝟏
A2 = 𝟎 ≤ 𝒂 ≤ 𝟏

𝒘𝒉𝒆𝒓𝒆:

𝒔𝒆𝒑 ≔ 𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒆𝒙𝒄𝒍𝒖𝒔𝒊𝒗𝒆 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔

◦ Action Space (A)
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◦ Reward Function (R)

𝑹 = 

𝒂 ∈𝑨𝟏

𝒓 𝒂 + 𝒃

𝒘𝒉𝒆𝒓𝒆:

𝑟 𝑎 = ቊ
𝑟 = 𝑎 𝑜 = 𝑡𝑟𝑢𝑒]

𝑟 = −𝑎 𝑜 = 𝑓𝑎𝑙𝑠𝑒]

𝑏 =

10 (𝑈𝑛𝑑𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘 ∧ (𝐴2≥ .8))]

10 (∼ 𝑈𝑛𝑑𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘 ∧ 𝐴2 ≤ .2 )]

−10 (𝑈𝑛𝑑𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘 ∧ (𝐴2 ≤ .5))]

−10 (∼ 𝑈𝑛𝑑𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘 ∧ (𝐴2 ≥ .5))]
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Setting up the RL Toolchain
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◦ Finding a Surface Vehicle Simulator

◦ Benchmarked existing simulators and found a lack of 
modeling environmental disturbances
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◦ ROS based Surface Vehicle Simulator

Wind Currents

Water Currents

Waves interacting with multiple ship links
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◦ Extended the ROS based Simulator by developing a node to: 
▫ Publish randomized navigation goals
▫ Collect data by subscribing to relevant topics
▫ Set environmental parameters 

Ship Navigating to Waypoint  Ship Navigating to 300 Waypoints  
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◦ Extended the ROS based Simulator by developing a node to: 
▫ Publish randomized navigation goals
▫ Collect data by subscribing to relevant topics
▫ Set environmental parameters 

ROS Node Receiving Data and Publishing Waypoints
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◦ Extended the ROS based Simulator by developing a node to: 
▫ Publish randomized navigation goals
▫ Collect data by subscribing to relevant topics
▫ Set environmental parameters 

Calm Water at Low Wind Speed Rough Waves at High Wind Speed
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◦ Toolchain Summary

ROS & GAZEBO Open AI Gym

Stable-Baselines3
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Policy Demonstration 
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◦ Training a Policy
▫ PPO Algorithm 
▫ 1 Million Timesteps

Learning Curve



Policy Demonstration 
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◦ Sanity Check

Benign Traffic

Observations

Confidence Levels
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◦ Sanity Check

Benign Traffic

High Confidence Levels

Overall Threat Level
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◦ Sanity Check

Attack Y Position

Attacking Y Position

Low Confidence Levels

Overall Threat Level
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◦ Sanity Check

Attacking X&Y Position

Attacking X & Y Position

Low Confidence Levels
Overall Threat Level



Policy Demonstration 
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◦ Sanity Check

Large X and Y Position

Attacking X/Y Positions and Engine Command 

Engine Off

Low Confidence Levels

Overall Threat Level



Policy Demonstration 
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◦ Dashboard for easy visualization  
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Future Work
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◦ Train policy for 10 - 50 million timesteps 
◦ Introduce network traffic rate and time to observation space
◦ Develop attack modules modeled from real-world APTs
◦ Configure simulator to represent real-world ship



Thank you!

Developed Codebase:
https://github.com/jasonjabbour/nta_rl

Contact me:
jason.jabbour@jhuapl.edu
jasonjabbour@g.harvard.edu
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